Teach your students about capillary action with this fun and easy-to-do science experiment. Walking Water uses low-cost materials with a dramatic result. All you need is paper towels, water, jars, and food coloring.
Capillary action occurs because water is sticky, thanks to the forces of cohesion (water molecules like to stay close together) and adhesion (water molecules are attracted and stick to other substances). Adhesion of water to the walls of a vessel will cause an upward force on the liquid at the edges and result in a meniscus that turns upward. The surface tension acts to hold the surface intact. We can see capillary action in this Walking Water Experiment. Capillary action occurs when the adhesion to the walls is stronger than the cohesive forces between the liquid molecules. The height to which capillary action will take water in a uniform circular tube (picture to right) is limited by surface tension and, of course, gravity.
Not only does water tend to stick together in a drop, it sticks to glass, cloth, organic tissues, soil, and, luckily, to the fibers in a paper towel. Dip a paper towel into a glass of water and the water will “climb” onto the paper towel. In fact, it will keep going up the towel until the pull of gravity is too much for it to overcome.
Capillary action is all around us every day
- If you dip a paper towel in water, you will see it “magically” climb up the towel, appearing to ignore gravity. You are seeing capillary action in action, and “climbing up” is about right – the water molecules climb up the towel and drag other water molecules along.
- Plants and trees couldn’t thrive without capillary action. Plants put down roots into the soil which are capable of carrying water from the soil up into the plant. Water, which contains dissolved nutrients, gets inside the roots and starts climbing up the plant tissue. Capillary action helps bring water up into the roots. But capillary action can only “pull” water up a small distance, after which it cannot overcome gravity. To get water up to all the branches and leaves, the forces of adhesion and cohesion go to work in the plant’s xylem to move water to the furthest leaf.
- Maybe you’ve used a fountain pen …. or maybe your parents or grandparents did. The ink moves from a reservoir in the body of the pen down to the tip and into the paper (which is composed of tiny paper fibers and air spaces between them), and not just turning into a blob. Of course, gravity is responsible for the ink moving “downhill” to the pen tip, but capillary action is needed to keep the ink flowing onto the paper.
